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ON THE GENERATION OF WAVES IN A PRESTRESSED LAYER 

V. V. KALINCHUK and I. B. POLIAKOVA 

Thelinearizedtheoryofpropagationofelasticwaves /l,Z/is usedas thestartingpoint 
inthestudyofspecific features oftheexcitation of a prestressedlayer clampedrigid- 

ly along its lower edge, by a vibrating stamp. The medium is assumed to be compres- 
sible, initially isotropic and possessing an elastic potential of arbitrary form, 
and the vibrations of the stamp are assumed harmonic. Integral equations and syst- 
ems of integral equations are constructed for the problems of a stamp of arbitrary 
and circular cross-section in the plane and of strip form, vibrating on the surface 
of a layer. 

The problem of vibration of a stamp lying on the surface of a layer without friction is 
used to carry out a numerical analysis of the dispersion curves, and in the case of a strip- 
like stamp, the dependence of the contact pressure on the intensity of the initial state of 
stress of the medium is studied. The latter is assumed homogeneous, i.e. /1,2/ 

l!n0 = 6,, (hi - 1) rn, n = 1, 2. 3 
hi = cons1. h, = h, =# h,, all*. =-m l&*0 # Q*" 

W are the components of the initial displacement of the points of the layer, hi are the 
relative elongations of the fibers, Q'S are the components of the generalized initial stress 
tensor, and 6i, is the Kronecker delta). 

1. Solution of the problem of excitation of the layer U<z3<h, 1~~1, 1~~1 <CO with 
the properties given above, by a surface load. 

(1 (z1, z*) e+l, q = {Pl, PZ> QS)? 51, 52 E 8, u* = cc + p” (1.1) 

(a, B are the parameters of the Fourier transformation with respect to the variables x1 and 
% and a is the region outside which the load is absent) can be written, using the princ- 

iple of limiting absorption, in the form 

uk (x1, x,, 0) = 0, k = 1, 2, 3 , Uj (21, Zg, x3, t) = Uj (51, X2, 53) e+‘, j = 1, 2, 3 (1.2) 

3 

uj (Il. x2, x3) = -& css qn (Et rl) k;, (x3,5 - XI, q - se) dE dq 
n-1 LI 

(1.3) 

&(xars,t)= sf; Aj",$Ia~+~~ldud~ 

AIn = A,, (sh b; z3 + k sh a, ZJ + AZ,, (ch a, x3 - ch 03 x3) + A3, sh 03 x3 

AZ" = IA,, (~11 u, x3 + k 41 u, x3) + Azn (ch u1 x3 - ch a, x3)1 x Pa-' - aS-'&,,, 311 % x3 

A 3 ” = i am1 IA,,, (/1 cl1 q x3 -(- kfl ch uz x3) + A2,,x (fl rh u1 x3 - f2 sll (J., z3)J 

Al1 = --I,T,Ts, Al2 = ape’TIT,, A,3 = i a (In - 1) T,T, 

AZ1 = l,T,T5. AZ2 = afS_’ T,T,, A,, : --i a (13 - 1) T,T5 

AZ1 = T,T, - T,T,, Ap2 -= - afi-‘A,,, AS5 = 0, A -z (1 - L3) x T, A:,, 

~~ = ,n, ch n& - ,,L% ch CJ&, Tz = +h u& - + sh O&L 

T, = ,nl sh u& - L.nlo sh o&, T4 = + ch o,h -i 1; + ch oh, T5 = A, u3 ch e3 h 

(1.4) 

(1.5) 

(1.6) 
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Here P is the density of the material of the medium, aih. and Pifi are the coefficients charact- 
erizing the stress-strain relationships and determined with the help of elastic potential /I, 

21. Their concrete form for the case of Murnaghan potential considered here will be given 
below. The contours I‘i; (with the exception of r,) lie on the real axis anddeviate fromit 
only to pass above or below the negative and positive singularities of the integrand function. 
Their choice is dictated by the principle of limiting absorption /3,4,5/. The right hand side 
of (1.3) determines the displacement of any point of the layer in which the initial stresses 
are caused by a load distributed in 51. 

2. Setting in (1.3) x:, = h, we obtain the displacement of the layer surface determined 
by the relations (q(& $1) = {fll, &, qa} in the stress vector and uO(rt, 4) = (u,, a.,, tla} is the layer 
surface displacement vector) 

(2.1) 

(2.2) 

(2.3) 

5' (u) = Iu,u, (1& f Z,d,) (1 - ch a& ch cr,h) + sh u1 h sh o, h (lIdI aI2 + la& usa) / A (u) 

R (4 = (d& - d&) (& 0; sh ur h cha& - &a, sh a, h x ch a1 h) / A (4 

A (u) = u,u, (E,m,d, f Z,m,d,) (1 - ch a, h ch a&) f sh o, h sh u& (Ilm& uz” + E,m,dz ox*) 

In the case of the problem of a stamp acting on the surface of a layer, the relation (2.1) 
represents a system of integral equations in terms of the contact stress vector. The functions 
appearing in (2.2) are analytic in the complex plane, real on the real axis and possess, on 
this axis, an enumerable set of zeros and poles the number of which depends on the frequency 

W. It is clear that when U+ x3. 

s (a) = C,/ us + 0 (n-3, iK(U) = c,/ Lt. -j- 0 (u-6) 

R (u) = c, / u + 0 (u-3), N (u) = c, / us + 0 (u-“) 

Using the relations (1.6!, we can obtain the expressions for the coefficients clr, which 
are too bulky and hence not given here. 

3. For the practically important case of vibration of a stamp of circular cross section, 
we obtain the following relations on the layer surface by passing in (2.1)- (2.3) to a cylind- 
rical coordinate system (u,,u* and ue are the radial, axial and torsional displacements of 
the layer surface, and !?rt Qz and q+, are the corresponding stresses under the stamp of radius 
a): 

For the axisymmetric oscillations we have 

n,= 9r(P)L(r,P)PdP+ jgz(P)kmCrVP)P+~ T 

" (1 

Z&= J qr(p)& (~,P)P+ + { cr,(~)fi~(r,~)fdp 
(3.1) 

i 0 0 i 

and for the skew symmetric oscillations we have 

(3.21 

where 

K,, (IL) = u*M (u), K,t (u) = --KS, (u) _-f US (u). K,, (u) = R (u), K,, (u) = u2N (u) 

The functions &J @), R (& 8 (a) and N(u) are defined by the formulas (2.3) _ The con- 
tour 1‘, lies on the positive part of the real axis, deviating from it to pass the singularit- 
ies of the integrand function from below /5,6/. 

4. Problem of vibration of a strip stamp of width 2a, directed along the axis x2, on 
the layer surface, reduces in the case of plane oscillations to the following systems of equat- 
ions: 
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(4.1) 

and in the case of antiplane oscillations to the integral equation 

1“ 
1 

kzz (t) = d, K?,(a) 

(a) 
KS(a) /I 

(4.2) 

K,, (CC) = d M (CL), K,, (a) = a S (4 K,, (4 -- K (a) , K,, (a) = a2 N (a) (4.3) 

The functions M(a), S (a), R(a), N(a) are given by the formulas (2.3), and a is the parameter 

of the one-dimensional Fourier transformation with respect to the variable xi. 

5. Integral equations and their systems similar tothose discussed on Sects.l-4, were 
dealt with in /3,7-ll/. Generally, it is not possible to verify whether the conditions of 

unique solvability given in these papers hold. Additional numerical analysis is required in 

every particular case ( a material with a given state law and physico-mechanical properties,' 

a definite character and intensity of the initial stresses). 

The present paper is concerned with the specific features of the process of wave genera- 

tion in a prestressed layer, by a vibrating stamp. This leads to the analysis of solutions of 

the integral equations of the corresponding problems constructed here. Some of the relation- 

ships can be established by studying the properties of the symbols of the kernels of integral 

equations, and in particular their dispersion curves. 

As an example, we consider a problem of a stamp vibrating in the direction normal to the 

layer surface, in the absence of friction between the stamp and the layer. We assume that the 

medium is hypereleastic with the Murnaghan potential, and the initial state of stress is de- 

scribed by the condition 

(Jll *J = up?*> = s,, uz3*3 = s:, 

The problem reduces to that of solving the integral equation 

I, : s F 

Q:{ (E) km (J, - s) d5 > /‘.u (t) = \’ K:m (u) eiUl du (5.1) 
-.<I b 

The symbol K,,(u) is defined in (4.3). The coefficients aih. and I(;~ appearing in the expres- 

sions (1.5)- (1.7) have, under the assumptions made, the form 
? 

a,i = k $ 2p + k, (uii%l + uii*s& i = 1, ', 3 

a,i =: h f ?i, (ati%, + CzlilSP), i = 2, 3 

I_‘,: = p -‘- k, (mli%I + mlrlSq), i = 2, 3 

UIIO = 4a + 2 (4 + y) b -+ (2 j y) c, czlll 2: 2a + 2 (1 - y) x 6 - yc 

az3" == 8a + 8 (1 - y) b - 4y c, ~33~ = ‘a i- (6 i- 4 y) b + 2 (1 + y) c 

a,,” m- 2a + (2 -j- y) 0. (I,? ’ =z (1 - y 6 

UI3O := 4a + (2 - y) 6, nl:$ : ?a -+ 2 (3 -‘- 2~) b + 2 x (1 -t- 1‘) c 

,lL,.1° 21 + (2 + y) c; 2, n~,~’ = b - yci 2 

In12 :. 2 11 (2 - y) c / ‘t, m131 = b + (2 + y) c/ 4 

1’ 
h,’ 1 + k" I(2 -:- y) St - -&I, AZ2 = 1 + k. l-2 ys, i_ 2 :: (1 -r I>) s.‘( 

,” 4 2% 0 

Fig.1 
y - A.' 1'. k" = (3h -:- "p))' 

(11 and h are the Lame parameters and a, 6. C are third order constants appearing in the ex- 
pression for the Murnaghan potential /1,2/). 

The problem of distribution of zeros and poles of the function K,,(u) (4.3) is important 
in proving the unique solvability of the equation. 

K,, (~6, xz) = 0 (% = ~CJI (p / p)“‘) for the zeros ch 
Solving the equations Ks3(Lh., x?) = 0 and 

and poles zh., we obtain the functions Gh-(xL) 
and zk(xp) (k iS the consecutivenumbers Of the zero or pole). Fig.1 depicts the graphs of 
these functions for s1 = s2 = 0 , with the poles represented by solid lines and the zeros by 
dashed lines. Such a distribution of the curves is characteristic also for the values CI i 

0'33 *' different from zero and this implies, according to /6/, the existence of a solution of 

(5.1) unique in &(a> 1) at all frequencies, for the values of S? considered here (Si -0). 

The computations were carried out for steel 09 G2S /2/ for the following values of the 
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elastic constants: 

h = 9.26.10" N/m? p = 7.75.P0'@ N/m2 
4 = -3.19 .fo" N/m: b = -3.03~1011 N/m2, c = -0.784*fO" N/m2 

Figure 2 shows how sZ influences the dependence of nh ~- (zk / zOk I l).iOj on xg, where 

%A denote the poles of K,,(u) (4.3) at s1=s2= 1) and Q denote thepolesin the case when 
the initial state of stress is not zero. The numbers 1,2 and 3 denote the curves obtained 
for the values of sa equal, respectively, to 2.10~*FL, 5.10-* p, 8.10-4 FL where p is the shear mod- 
ulus. The graphs show the ranges of the values of x2 over which sp exert a "weak" and a 
"strong" influence on ‘k @d* Comparing Fig.2 with Fig.1 we see, that the ranges of strong 
influence correspond to the neighborhoods of the points of inflection of the curves Zk(%p). 

The range of variation of s2 is made somewhat wider compared with that adopted in the 

literature /1,2/, in order to represent more accurately the influence of the intensj -tY of the 
initial state of stress on the wave generating process under the stamp, as well as outside it. 
The behavior of the free surface outside the stamp can bedescribed by the functions/IO/ (A's 
are numerical coefficients and B is the approximation parameter) 

,/S 
'Ff (2) -LL 'p (fr -- a), $2 -- n :‘, 1 . ‘p (t) 7 kz, sp -’ 0 (e-U’! (5.2) 

From (5.2) it follows that in the neighborhood of the point of inflection of the curves zk(xI) 
small changes in the value of (rS3*' may lead to arbitrarily sharp changes in the wave pattern 
at the layer surface. 

Fig.2 

Knowing the distribution of zerosand polesof K,, (Cl) (4.3) , we can construct the approx- 
imating function /3,7-13/ 

I\* (It) cI (,$ _j. n?)-'/Z fr ($ _ &,') jr@ __ic)-' 
(5.3) 

,i~ I 
The form of the solution in the case of u~(.+ e\p,qk and of the approximating function in vari- 
ous forms, are given in /3,7-13/. 

Figure 3 depicts the graphs of the function q= 
constructed with the help of a digital comput- 

er for the case of a vibrating flat stamp for n = 0, 
for the values % l * = 5.10-4 p, 1O"p, 

(curves 1-3 respectively). 
we note that the graphs in the Figs.1 and 2 enable 

use to establish the presence of a unique solution of 
the axisymmetric problem /4/ of vibration of a stamp 
,of circular cross-section on the surface of a prestres- 
! sed layer, and to clarify the influence of the magni- 

I! tude of the initial stress on the wave formation out- 
The method developed in /7,12,13/ can 
te the constact stresses under the 
al the influence of the intensity of 

prestressed state on their distribution. 
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